Synthesis Of Heterocycles Via Cycloadditions II (Topics In Heterocyclic Chemistry) (No. 2)
Heterocyclic molecules play a significant role in life processes and have played a major role in industrial developments of the last century, for instance in the field of dyes, pharmaceuticals, pesticides, polymers etc. They comprise not only some of the most interesting and biologically important natural products like alkaloids, carbohydrates, nucleic acids, and antibiotics but include many practical drugs and a large segment of known synthetic organic compounds.

Hence scientists have devoted a great amount of effort to finding optimal synthetic approaches to a variety of heterocyclic compounds. Among the most successful and selective synthetic processes are cycloaddition reactions, since they involve simultaneous or sequential formation of two or more bonds often with a high degree of stereoselectivity and regioselectivity. For instance, 1,3 dipolar cycloadditions, which are electronically equivalent to Diels-Alder reactions, are among the most common 5-membered ring-forming systems. In addition they usually proceed with a high degree of stereo- and regio-control. It is therefore, not surprising that synthesis of many important classes of heterocycles, including those of useful biologically active molecules, have utilized cycloaddition steps in their formation.

Furthermore, many heterocycles serve as intermediates in the synthesis of polyfunctional molecules. Volume I of "Synthesis of Heterocycles via Cycloadditions" featured five chapters on the following topics: - Isoxazolines from Nitro Compounds: Synthesis and Applications; - Cycloaddition Reactions of Azides Including Bioconjugation; - Enantioselective Cycloadditions of Azomethine Ylides; - Heterocycles by Cycloadditions of Carbonyl Ylides Generated from Diazoketones; - Heterocycles from Unsaturated Phosphorus Ylides. In this volume we present four selected contributions by well-known authors, each an authority in his field. The first chapter is devoted to the use of oximes in cycloadditions which leads to formation of isoxazolines and isoxazolidines and from there to synthesis of macrolides like amphotericin and of other natural products and bioactive molecules. Furthermore, 4+2 cycloadditions of nitrosoalkenes are also included. This chapter complements the one in the Preface previous volume which discussed access to isoxazolines via nitroalkanes.

Book Information

Series: Topics in Heterocyclic Chemistry (Book 13)

Hardcover: 214 pages

Publisher: Springer; 2008 edition (August 27, 2008)

Language: English
Monographs) (Volume 46) The Chemistry of Heterocyclic Compounds, Quinoxalines: Supplement II
(Chemistry of Heterocyclic Compounds: A Series Of Monographs) (Volume 61)